Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures
نویسندگان
چکیده
Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of "synchronicity" of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملCognitive Impairments in Schizophrenia as Assessed Through Activation and Connectivity Measures of Magnetoencephalography (MEG) Data
The cognitive dysfunction present in patients with schizophrenia is thought to be driven in part by disorganized connections between higher-order cortical fields. Although studies utilizing electroencephalography (EEG), PET and fMRI have contributed significantly to our understanding of these mechanisms, magnetoencephalography (MEG) possesses great potential to answer long-standing questions li...
متن کاملModulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene
Hippocampal theta-band oscillations are thought to facilitate the co-ordination of brain activity across distributed networks, including between the hippocampus and prefrontal cortex (PFC). Impairments in hippocampus-PFC functional connectivity are implicated in schizophrenia and are associated with a polymorphism within the ZNF804A gene that shows a genome-wide significant association with sch...
متن کاملCombined MEG and fMRI model
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...
متن کامل